Loc/Block

0000
0000
0003
0006
0009
oooc
000F
0012
0015
0018
001B
001E
0021
0024
0000
0000
0003
0000
0000
1000
1000

0055
0058
005B
005E
0060
0063
0007

0007
000A

Figure 2.12(a) Program from Fig. 2.11 with object code.

LSRR N o s NoNoNoNoRoNoNoloNoRoRoRo R o)

HFPOOOOO0OODOOODOOOOOO

alleNeoloNoNoNoNoNoNeNe]

(S

Source statement

COPY
FIRST
CLOOP

ENDFIL

RETADR
LENGTH

BUFFER
BUFEND
MAXLEN

RDREC

RLOOP

EXIT

INPUT

WRREC

WLOOP

*

START
STL
JSUB
LDA
COMP
JEQ
JSUB
J
Lba
STA
LDA
STA
JSUB
v)
USE
RESW
RESW
USE
RESB *
EQU
EQU

0
RETADR
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
=C'EOF’
BUFFER
#3
LENGTH
WRREC
@RETADR
CDATA
1
1
CBLKS
4096

*

BUFEND-BUFFER

Assemblers 83

Object code

172063
4B2021
032060
290000
332006
4B203B
3F2FEE
032055
0F2056
010003
0F2048
4B2029
3E203F

SUBROUTINE TO READ RECORD INTO BUFFER

USE
CLEAR
CLEAR
CLEAR
+LDT
D
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
STX
RSUB
USE
BYTE

X

A

S
#MAXLEN
INPUT
RLOOP
INPUT
A,S
EXIT
BUFFER, X
T
RLOOP
LENGTH

CDATA
X'Fl’

B410
B400
B440
75101000
E32038
332FFA
DB2032
AQ04
332008
57A02F
B850
3B2FEA
13201F
4F0000

F1

SUBROUTINE TO WRITE RECORD FROM BUFFER

USE
CLEAR
LDT
TD
JEQ
LDCH
WD
TIXR
JLT
RSUB
USE
LTORG
=C’EOF
=X'05"
END

X

LENGTH
=X’05"
WLOOP
BUFFER, X
=X'05"

T

WLOOP

CDATA

FIRST

B410

772017

E3201B -
332FFA

53A016

DF2012

B850

3B2FEF

4F0000

454F46
05

84

System Software

begin
block number = 0 LOCCTR{i] = 0 for all i
read the first input line
if OPCODE = 'START' then
begin
write line to intermediate file
read next input line
end {if START}
while OPCODE # 'END' do
if OPCODE = 'USE'
begin
if there is no OPEREND name then
set block name as default
else block name as OPERAND name
if there is no entry for block name then
insert (block name, block number ++) in block table
i = block number for block name
if this is not a comment line then
begin
if there is a symbol in the LABEL field then
begin
search SYMTAB for LABEL
if found then
set error flag (duplicate symbol)
else
insert (LABEL, LOCCTR[i]) into SYMTAB
end {if symbol}
Search OPTAB for OPCODE
if found then
add 3 instruction length to LOCCTRI[i]
else if OPCODE = 'WORD' then
add 3 to LOCCTRI[1i]
else if OPCODE = 'RESW' then
add 3 * #[OPERAND] to LOCCTRI[i]
else if OPCODE = 'RESB' then
add #[OPERAND]} to LOCCTRI[il]
else 1f OPCODE = 'BYTE' then
begin
find length of constant in bytes
add length to LOCCTRI[i]
end {if byte}
else

Figure 2.12(b) Pass 1 of program blocks.

Assemblers

Set error flag
end {if not a comment}
write line to intermediate file
read Text input line
end {while not END)
write last line to intermediate file
save Length([i] as LOCCTR[i] for all i
Addr¥ess([o] = starting address
Address([i] = address(i - 1) + Length(i - 1)
[for i = 1 to max(block number)]
insert(address([i], Length[i]) in block table for all i
‘end {Pass 1}

Figure 2.12(b) (contd)

If OPCODE = 'USE' then
set block number for block name with OPERAND field -
search SYMTAB for OPERAND

store symbol value + address [block number] as operand address

end {Pass 2}

Figure 2.12(c) Pass 2 of program blocks.

is moved to the end of the object program, we no longer need to use extended
format instructions on lines 15, 35, and 65. Furthermore, the base register is no
longer necessary; we have deleted the LDB and BASE statements previously
on lines 13 and 14. The problem of placement of literals (and literal references)
in the program is also much more easily solved. We simply include a LTORG
statement in the CDATA block to be sure that the literals are placed ahead of
any large data areas.

Of course the use of program blocks has not accomplished anything we
could not have done by rearranging the statements of the source program. For
example, program readability is often improved if the definitions of data areas
are placed in the source program close to the statements that reference them.
This could be accomplished in a long subroutine (without using program
blocks) by simply inserting data areas in any convenient position. However,
the programmer would need to provide Jump instructions to branch around
the storage thus reserved.

In the situation just discussed, machine considerations suggested that the
parts of the object program appear in memory in a particular order. On the

85

86

System Software

other hand, human factors suggested that the source program should be in a
different order. The use of program blocks is one way of satisfying both of
these requirements, with the assembler providing the required reorganization.

It is not necessary to physically rearrange the generated code in the object
program to place the pieces of each program block together. The assembler can
simply write the object code as it is generated during Pass 2 and insert the
proper load address in each Text record. These load addresses will, of course,
reflect the starting address of the block as well as the relative location of the
code within the block. This process is illustrated in Fig. 2.13. The first two Text
records are generated from the source program lines 5 through 70. When the
USE statement on line 92 is recognized, the assembler writes out the current
Text record (even though there is still room left in it). The assembler then pre-
pares to begin a new Text record for the new program block. As it happens, the
statements on lines 95 through 105 result in no generated code, so no new Text
records are created. The next two Text records come from lines 125 through
180. This time the statements that belong to the next program block do result
in the generation of object code. The fifth Text record contains the single byte
of data from line 185. The sixth Text record resumes the default program block
and the rest of the object program continues in similar fashion.

It does not matter that the Text records of the object program are not in
sequence by address; the loader will simply load the object code from each
record at the indicated address. When this loading is completed, the generated
code from the default block will occupy relative locations 0000 through 0065; the
generated code and reserved storage for CDATA will occupy locations 0066
through 0070; and the storage reserved for CBLKS will occupy locations
0071 through 1070. Figure 2.14 traces the blocks of the example program
through this process of assembly and loading. Notice that the program seg-
ments marked CDATA(1) and CBLKS(1) are not actually present in the object
program. Because of the way the addresses are assigned, storage will automat-
ically be reserved for these areas when the program is loaded.

HlFOP‘I A000000A001071

TAOOOOO‘ Al EA172063A432021A032060A290000A332006,\&3203BA3F2FEEAO32055A0F2056A010003
TAOOOOIEA09AOF20108A432029A33203F .
T000027lDBA10A3400K3460A75l01OOOAE32038A332FFA,PBZO3%0010A332008A57A02FA3850
T000064A09/‘3BZFEAA132011’,’\61-‘0000

1;\00006(%01;1

1“\0000101)’\19/\3410/\77201 z\E32015\332FF5\53A016ADF2012A3850A332FEF'\4F0000
TA000069\04A454F06A05

EAOOOOOO

>
>
>

Figure 2.13 Object program corresponding to Fig. 2.11.

Assemblers

Program loaded

Source program Object program in memory
-) Relative
Line address
5 . 0000
/ Default(1) |j——————eeep! Default(1)
Default(1) 0027
" Default(2) |—————p| Default(2)
o8 [004D
CDATA(2)
CDATA(1) Default(3)
100 Default(3)
efault
::2 CBLKS(1) COATA) 0066
CDATA(3) \ CDATA(2) |0PC
006D
Default2) ! . CDATA@3) ,
0071
180
185] CDATA(2)
210"
CBLKS(1)
Default(3)
245
253| CDATA(3)
1070

Figure 2.14 Program blocks from Fig. 2.11 traced through the assembly
and loading processes.

You should carefully examine the generated code in Fig. 2.12, and work
through the assembly of several more instructions to be sure you understand
how the assembler handles multiple program blocks. To understand how the
pieces of each program block are gathered together, you may also want to sim-
ulate (by hand) the loading of the object program of Fig. 2.13. The algorithm is
shown in Fig. 2.12(b).

2.3.5 Control Sections and Program Linking

In this section, we discuss the handling of programs that consist of multiple
control sections. A control section is a part of the program that maintains its

87

88

System Software

identity after assembly; each such control section can be loaded and relocated
independently of the others. Different control sections are most often used for
subroutines or other logical subdivisions of a program. The programmer can
assemble, load, and manipulate each of these control sections separately. The
resulting flexibility is a major benefit of using control sections. We consider
examples of this when we discuss linkage editors in Chapter 3.

When control sections form logically related parts of a program, it is neces-
sary to provide some means for linking them together. For example, instruc-
tions in one control section might need to refer to instructions or data located
in another section. Because control sections are independently loaded and
relocated, the assembler is unable to process these references in the usual way.
The assembler has no idea where any other control section will be located at
execution time. Such references between control sections are called external ref-
erences. The assembler generates information for each external reference that
will allow the loader to perform the required linking. In this section we
describe how external references are handled by our assembler. Chapter 3 dis-
cusses in detail how the actual linking is performed.

Figure 2.15 shows our example program as it might be written using multi-
ple control sections. In this case there are three control sections: one for the
main program and one for each subroutine. The START stateraent identifies
the beginning of the assembly and gives a name (COPY) to the first control
section. The first section continues until the CSECT statement on line 109. This
assembler directive signals the start of a new control section named RDREC.
Similarly, the CSECT statement on line 193 begins the control section named
WRREC. The assembler establishes a separate location counter (beginning at 0)
for each control section, just as it does for program blocks.

Control sections differ from program blocks in that they are handled sepa-
rately by the assembler. (It is not even necessary for all control sections in a
program to be assembled at the same time.) Symbols that are defined in one
control section may not be used directly by another control section; they must
be identified as external references for the loader to handle. Figure 2.15 shows
the use of two assembler directives to identify such references: EXTDEF (exter-
nal definition) and EXTREF (external reference). The EXTDEF statement in a
control section names symbols, called external symbols, that are defined in this
control section and may be used by other sections. Control section names (in
this case COPY, RDREC, and WRREC) do not need to be named in an EXTDEF
statement because they are automatically considered to be external symbols.
The EXTREF statement names symbols that are used in this control section
and are defined elsewhere. For example, the symbols BUFFER, BUFEND, and
LENGTH are defined in the control section named COPY and made available
to the other sections by the EXTDEF statement on line 6. The third control sec-
tion (WRREC) uses two of these symbols, as specified in its EXTREF statement

115
120
122
125

132
133
135
140
145
150
155
160
165
170
175
180
185
190

193
195
200
205
207
210
212
215
220
225
230
235
240
245
255

Source statement

COPY

FIRST
CLOOP

ENDFIL

RETADR
LENGTH

BUFFER

BUFEND
MAXLEN

RDREC

RLOOP

EXIT

INPUT
MAXLEN

WRREC

WLOOP

START
EXTDEF
EXTREF
STL
+JSUB
LDA
COMP
JEQ
+JSUB
J
LDA
STA
LDA
STA
+JSUB
J
RESW
RESW
LTORG
RESB
EQU
EQU

CSECT

0

Assemblers

COPY FILE FROM INPUT TO OUTPUT

BUFFER, BUFEND, LENGTH

RDREC, WRREC

RETADR
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
=C’EOF’
BUFFER

#3

LENGTH
WRREC
@RETADR
1
1

4096

*

SAVE RETURN ADDRESS
READ INPUT RECORD
TEST FOR EOF (LENGTH = 0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD

LOOP

INSERT END OF FILE MARKER
SET LENGTH = 3

WRITE EOF
RETURN TO CALLER

LENGTH OF RECORD

4096-BYTE BUFFER AREA

BUFEND-BUFFER

SUBROUTINE TO READ RECORD INTO BUFFER

EXTREF
CLEAR
CLEAR
CLEAR
LDT
TD
JEQ
RD
COMPR
JEQ
+STCH
TIXR
JLT
+STX
RSUB
BYTE
WORD

CSECT

BUFFER, LENGTH, BUFEND

X

A

S
MAXLEN
INPUT
RLOOP
INPUT
A,S

EXIT
BUFFER, X

T
RLOOP
LENGTH

X'F1l°

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X'00’)
EXIT LOOP IF EOR
STORE CHARACTER IN BUFFER
LOOP UNLESS MAX LENGTH
HAS BEEN REACHED
SAVE RECORD LENGTH
RETURN TO CALLER
CODE. FOR INPUT DEVICE

BUFEND-BUFFER

SUBROUTINE TO WRITE RECORD FROM BUFFER

EXTREF
CLEAR
+LDT
TD
JEQ
+LDCH
WD
TIXR
oLT
RSUB
END

LENGTH, BUFFER

X

LENGTH
=X'05"
WLOOP
BUFFER, X
=X'05"

T

WLOOP

FIRST

CLEAR LOOP COUNTER

TEST OUTPUT DEVICE

LOOP UNTIL READY

GET CHARACTER FROM BUFFER

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

RETURN TO CALLER

Figure 2.15 lllustration of control sections and program linking.

89

System Software

(line 207). The order in which symbols are listed in the EXTDEF and EXTREF
statements is not significant.

Now we are ready to look at how external references are handled by the
assembler. Figure 2.16 shows the generated object code for each statement in
the program. Consider first the instruction

15 0003 CLOOP +JSUB RDREC 4B100000

The operand (RDREC) is named in the EXTREF statement for the control sec-
tion, so this is an external reference. The assembler has no idea where the con-
trol section containing RDREC will be loaded, so it cannot assemble the
address for this instruction. Instead the assembler inserts an address of zero
and passes information to the loader, which will cause the proper address to
be inserted at load time. The address of RDREC will have no predictable rela-
tionship to anything in this control section; therefore relative addressing is not
possible. Thus an extended format instruction must be used to provide room
for the actual address to be inserted. This is true of any instruction whose
operand involves an external reference.
Similarly, the instruction

160 0017) +STCH BUFFER, X 57900000

makes an external reference to BUFFER. The instruction is assembled using
extended format with an address of zero. The x bit is set to 1 to indicate
indexed addressing, as specified by the instruction. The statement

190 0028 MAXLEN WORD BUFEND-BUFFER 000000

is only slightly different. Here the value of the data word to be generated is
specified by an expression involving two external references: BUFEND and
BUFFER. As before, the assembler stores this value as zero. When the program
is loaded, the loader will add to this data area the address of BUFEND and
subtract from it the address of BUFFER, which results in the desired value.

Note the difference between the handling of the expression on line 190 and
the similar expression on line 107. The symbols BUFEND and BUFFER are
defined in the same control section with the EQU statement on line 107. Thus
the value of the expression can be calculated immediately by the assembler.
This could not be done for line 190; BUFEND and BUFFER are defined in
another control section, so their values are unknown at assembly time.

As we can see from the above discussion, the assembler must remember
(via entries in SYMTAB) in which control section a symbol is defined. Any
attempt to refer to a symbol in another control section must be flagged as an
error unless the symbol is identified (using EXTREF) as an external reference.
The assemblcr must also allow the same symbol to be used in different control

Line

10
15
20
25
30
35
40
45
50
55
60
65
70
95
100
103

105
107

109
110
115
120
122
125
130
132
133
135
140
145
150
155
160
165
170
175

Loc
0000

0000
0003
0007
000A
000D
0010
0014
0017
001A
001D
0020
0023
0027
002a
002D

0030
0033
1033
1000

0000

0000
0002
0004
0006
0009
o0ooc
000F
0012
0014
0017
001B
001D
0020
0024
0027
0028

0000

0000
0002
0006
0009
000C
0010
0013
0015
0018

001B

Figure 2.16 Program from Fig. 2.15 with object code.

Source statement

COPY

FIRST
CLOOP

ENDFIL

RETADR
LENGTH

*

BUFFER
BUFEND
MAXLEN

RDREC

RLOOP

EXIT

INPUT
MAXLEN

WRREC

WLOOP

*

START
EXTDEF
EXTREF
STL
+JSUB
LDA
COMP
JEQ
+JSUB
J
LDA
STA
LDA
STA
+JSUB
J
RESW
RESW
LTORG
=C’EOF"’
RESB
EQU
EQU

CSECT

0

Assemblers

Object code

BUFFER, BUFEND, LENGTH

RDREC, WRREC
RETADR
RDREC
LENGTH
#0
ENDFIL
WRREC
CLOOP
=C’EOF’
BUFFER
#3
LENGTH
WRREC
@RETADR
1

1

4096

*

BUFEND-BUFFER

172027
4B100000
032023
290000
332007
4B100000
3F2FEC
032016
0F2016
010003
0F200A
4B100000
3E2000

454F46

SUBROUTINE TO READ RECORD INTO BUFFER

EXTREF
. CLEAR
CLEAR
CLEAR
LDT
TD
JEQ
RD
COMPR
JEQ
+STCH
TIXR
JLT
+STX
RSUB
BYTE
WORD

CSECT

BUFFER, LENGTH, BUFEND

X

A

S
MAXLEN
INPUT
RLOOP
INPUT
A,S
EXIT
BUFFER, X
T
RLOOP
LENGTH

X'F1°
BUFEND-BUFFER

B410
B400
B440
77201F
E3201B
332FFA
DB2015
A004
332009
57900000
B850
3B2FE9
13100000
4F0000
Fl
000000

SUBROUTINE TO WRITE RECORD FROM BUFFER

EXTREF
CLEAR
+LDT
TD
JEQ
+LDCH
WD
TIXR
JLT
RSUB
END
=X'05"

LENGTH, BUFFER
X

LENGTH

=X'05"

WLOOP
BUFFER, X
=X’'05"

T

WLOOP

FIRST

B410
77100000
E32012
332FFA
53300000
DF2008
B850
3B2FEE
4F0000

05

91

92

System Software

sections. For example, the conflicting definitions of MAXLEN on lines 107 and
190 should cause no problem. A reference to MAXLEN in the control section
COPY would use the definition on line 107, whereas a reference to MAXLEN
in RDREC would use the definition on line 190.

So far we have seen how the assembler leaves room in the object code for
the values of external symbols. The assembler must also include information
in the object program that will cause the loader to insert the proper values
where they are required. We need two new record types in the object program
and a change in a previously defined record type. As before, the exact format
of these records is arbitrary; however, the same information must be passed to
the loader in some form.

The two new record types are Define and Refer. A Define record gives
information about external symbols that are defined in this control section—
that is, symbols named by EXTDEF. A Refer record lists symbols that are used
as external references by the control section—that is, symbols named by
EXTREF. The formats of these records are as follows.

Define record:
Col. 1 D
Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address of symbol within this control section
(hexadecimal)
Col. 14-73 Repeat information in Col. 2-13 for other external
symbols
Refer record:
Col. 1 R
Col. 2-7 Name of external symbol referred to in this control
section
Col. 8-73 Names of other external reference symbols

The other information needed for program linking is added to the
Modification record type. The new format is as follows.

Modification record (revised):

Col. 1 M

Col. 2-7 Starting address of the field to be modified, relative to
the beginning of the control section (hexadecimal)

Col. 8-9 Length of the field to be modified, in half-bytes (hexa-

decimal)

Col. 10
Col. 11-16

Assemblers

Modification flag (+ or -)

External symbol whose value is to be added to or sub-
tracted from the indicated field

The first three items in this record are the same as previously discussed. The
two new items specify the modification to be performed: adding or subtract-
ing the value of some external symbol. The symbol used for modification may
be defined either in this control section or in another one.

Figui‘e 2.17 shows the object program corresponding to the source in
Fig. 2.16. Notice that there is a separate set of object program records (from

HCOPY '900000/\001033

DABUFFERI{)OOO.'! 3ABUFENDA00 1033ALENGTH,90002D

%DREC klRREC

TAOOOOOOAIDA172027A43100000A03202%\290000,\332007/\451OOOOOABFZFECA032016,\0172016
TAOOOOIDAODAO10003A0F200AA!;B100000,\3!‘.2000

TA000039\03A454F46
P&OOOOOAAOSA«*-RDREC

HAOOOO 1 I'AO.SA+VRREC

H,?OOOZ#AOSA-HIRREC
EAOOOOOO

B’@DREC ’(JOOOOOAOOOOZ B

R;PUFFB%ENGT%@UFEND

TAOOOOOQ\H)\Bﬁ 10A3600/P440A7 7 20117;\2320 1 %332!‘?!*)32015/@004/\3 32009,‘57 9000008850
TAOOOO 1 DA°F7\332FE9A13 IOOOOOAIoFOOOOAF IAOOOOOO

l%OOOOlq‘OSA-O'BUFPER
H,{JOOOZ 1A05A+LENCTH
M,900028A06A+BUFEND
P%)OOOZBAOGA—BUFFER
E

HAHRREC _1900000,\0000 1C

%ENGTI&IUPF!R

TAOOOOO(;\I CABA lOA77 lOOOOOAEJ 201 2A332FF%3900009\DF2008A38 SOAJBZFEEAbFOOOOAOS

HAOOOOO%\OSA-PLBNGTH
HAOOOOODAOSA+BUFFER
E

Figure 2.17 Object program corresponding to Fig. 2.15.

93

94

System Software

Header through End) for each control section. The records for each control sec-
tion are exactly the same as they would be if the sections were assembled sep-
arately.

The Define and Refer records for each control section include the symbols
named in the EXTDEF and EXTREF statements. In the case of Define, the
record also indicates the relative address of each external symbol within the
control section. For EXTREF symbols, no address information is available.
These symbols are simply named in the Refer record.

Now let us examine the process involved in linking up external references,
beginning with the source statements we discussed previously. The address
field for the JSUJB instruction on line 15 begins at relative address 0004. Its ini-
tial value in the object program is zero. The Modification record

M0O0000405+RDREC

in control section COPY specifies that the address of RDREC is to be added to
this field, thus producing the correct machine instruction for execution. The
other two Modification records in COPY perform similar functions for the
instructions on lines 35 and 65. Likewise, the first Modification record in con- .
trol section RDREC fills in the proper address for the external reference on
line 160.

The handling of the data word generated by line 190 is only slightly differ-
ent. The value of this word is to be BUFEND-BUFFER, where both BUFEND
and BUFFER are defined in another control section. The assembler generates
an initial value of zero for this word (located at relative address 0028 within
control section RDREC). The last two Modification records in RDREC direct
that the address of BUFEND be added to this field, and the address of
BUFFER be subtracted from it. This computation, performed at load time,
results in the desired value for the data word.

In Chapter 3 we discuss in detail how the required modifications are per-
formed by the loader. At this time, however, you should be sure that you
understand the concepts involved in the linking process. You should carefully
examine the other Modification records in Fig. 2.17, and reconstruct for your-
self how they were generated from the source program statements.

Note that the revised Modification record may still be used to perform pro-
gram relocation. In the case of relocation, the modification required is adding
the beginning address of the control section to certain fields in the object pro-
gram. The symbol used as the name of the control section has as its value the
required address. Since the control section name is automatically an external
symbol, it is available for use in Modification records. Thus, for example, the
Modification records from Fig. 2.8 are changed from

